Publications.

2024

11. A Scalable Dynamic Segmented Bus Interconnect for Neuromorphic Architectures

Authors: K. Huynh, I. Mustafazade, N. Kandasamy, F. Catthoor, and A. Das

Journal: IEEE Embedded Systems Letters (ESL)

10. Wafer2Spike: Spiking Neural Network for Wafer Map Pattern Classification

Authors: A. Mishra, S. Kumar, A. Lingamoorthy, A. Das, and N. Kandasamy

Conference: International Test Conference (ITC)

9. Neuromorphic Computing for the Masses

Authors: S. Matinizadeh, A. Mohammadhassani, N. Pacik-Nelson, I. Polykretis, K. Tishbi, S. Kumar, A. Mishra, N. Kandasamy, J. Shackleford, E. Gallo, and A. Das

Conference: International Conference on Neuromorphic Systems (ICONS)

GitHub: SOftware-defined NeuromorphIC (SONIC)

8. Learning in Recurrent Spiking Neural Networks with Sparse full-FORCE Training

Authors: A. Paul and A. Das

Conference: International Conference on Artificial Neural Networks (ICANN)

7. Sparsity Aware Learning in Feedback-driven Differential Recurrent Neural Networks

Authors: A. Paul and A. Das

Conference: International Conference on Artificial Neural Networks (ICANN)

6. An Open-Source and Extensible Framework for Fast Prototyping and Benchmarking of Spiking Neural Network Hardware

Authors: S. Matinizadeh and A. Das

Conference: IEEE International Conference on Field-Programmable Logic and Applications (FPL)

GitHub: {PRO}totyping and benchmarking of S{N}N hardware using {TO}rch-based machine learning dialects (PRONTO)

5. A Fully-Configurable Digital Spiking Neuromorphic Hardware Design with Variable Quantization and Mixed Precision

Authors: S. Matinizadeh, A. Mohammadhassani, N. Pacik-Nelson, I. Polykretis, A. Mishra, J. Shackleford, N. Kandasamy, E. Gallo, and A. Das

Conference: IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)

GitHub: A (quanti)zed (s)pike-(e)nabled (n)eural (c)ore design (QUANTISENC)

4. CMOS-Memristor Hybrid Design of a Neuromorphic Crossbar Array with Integrated Inference and Training

Authors: S. Johari, A. Mohammadhassani, M. L. Varshika, and A. Das

Conference: IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)

3. Clustering and Allocation of Spiking Neural Networks on Crossbar-Based Neuromorphic Architecture

Authors: I. Mustafazade, N. Kandasamy, and A. Das

Conference: ACM International Conference on Computing Frontiers (CF)

Best Paper Award.

2. Data Driven Learning of Aperiodic Nonlinear Dynamic Systems Using Spike Based Reservoirs-in-Reservoir

Authors: A. Paul, N. Kandasamy, K. Dandekar, and A. Das

Conference: IEEE International Joint Conference on Neural Networks (IJCNN)

1. WaferCap: Open Classification of Wafer Map Patterns using Deep Capsule Network

Authors: A. Mishra, M. E. Shaik, A. Lingamoorthy, S. Kumar, A. Das, N. Kandasamy, and N. Touba

Conference: IEEE VLSI Test Symposium (VTS)

2023

9. Fault Tolerant Architectures

Authors: S. S. Sahoo, A. Das, and A. Kumar

Publisher: Springer

Book Chapter: Handbook of Computer Architecture

8. Platform-Based Design of Embedded Neuromorphic Systems

Authors: M. L. Varshika and A. Das

Publisher: Springer

Book Chapter: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing

7. NeuSB: A Scalable Interconnect Architecture for Spiking Neuromorphic Hardware

Authors: A. Balaji, K. Huynh, F. Catthoor, N. Dutt, J. Krichmar, and A. Das

Journal: IEEE Transactions on Emerging Topics in Computing (TETC)

6. A Design Flow for Scheduling Spiking Deep Convolutional Neural Networks on Heterogeneous Neuromorphic System-on-Chip

Author: A. Das

Journal: ACM Transactions on Embedded Computing Systems (TECS)

5. Hardware-Software Co-Design for On-Chip Learning in AI Systems

Authors: L. M. Varshika, A. Mishra, N. Kandasamy, and A. Das

Conference: Asia and South Pacific Design Automation Conference (ASP-DAC)

4. Preserving Privacy of Neuromorphic Hardware From PCIe Congestion Side-Channel Attack

Author: A. Das

Conference: IEEE Annual Computers, Software, and Applications Conference (COMPSAC)

3. Online Performance Monitoring of Neuromorphic Computing Systems

Authors: A. Mishra, A. Das, and N. Kandasamy

Conference: IEEE European Test Symposium (ETS)

2: Design of a Tunable Astrocyte Neuromorphic Circuitry with Adaptable Fault Tolerance

Authors: M. L. Varshika, S. Johari, J. Dubey, and A. Das

Conference: IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)

Best Paper Candidate.

1. Improving Performance of Network-on-Memory Architectures via (De-)/Compression-in-DRAM

Authors: A. Mohammadhassani and A. Das

Conference: ACM International Workshop on System-Level Interconnect Pathfinding (SLIP)

2022

11. Real-Time Scheduling of Machine Learning Operations on Heterogeneous Neuromorphic SoC [GitHub Code]

Author: A. Das

Conference: 20th ACM-IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE)

Date: October 13-14, 2022

10. Built-In Functional Testing of Analog In-Memory Accelerators for Deep Neural Networks

Authors: A. Mishra, A. Das and N. Kandasamy

Journal: Electronics, 11, 2592

Date: August, 2022

9. Learning in Feedback-driven Recurrent Spiking Neural Networks using full-FORCE Training

Authors: A. Paul, S. Wagner and A. Das

Conference: IEEE International Joint Conference on Neural Networks (IJCNN)

Date: July 18-23, 2022

8. Multiscale Voxel Based Decoding For Enhanced Natural Image Reconstruction From Brain Activity

Authors: M. Halac, M. Isik, H. Ayaz and A. Das

Conference: IEEE International Joint Conference on Neural Networks (IJCNN)

Date: July 18-23, 2022

7. CARLsim 6: An Open Source Library for Large-Scale, Biologically Detailed Spiking Neural Network Simulation

Authors: L. Niedermeier, K. Chen, J. Xing, A. Das, J. Kopsick, E. Scott, N. Sutton, K. Weber, N. Dutt and J. L. Krichmar

Conference: IEEE International Joint Conference on Neural Networks (IJCNN)

Date: July 18-23, 2022

6. A Design Methodology for Fault-Tolerant Computing using Astrocyte Neural Networks

Authors: M. Isik, A. Paul, M. L. Varshika and A. Das

Conference: 19th ACM International Conference on Computing Frontiers (CF)

Date: May 17-19, 2022, Turin, Italy

5. Design-Technology Co-Optimization for NVM-based Neuromorphic Processing Elements

Authors: S. Song, A. Balaji, A. Das and N. Kandasamy

Journal: ACM Transactions on Embedded Computing (TECS)

Date:2022

4. Nonvolatile Memories in Spiking Neural Network Architectures: Current and Emerging Trends

Authors: L. M. Varshika, F. Corradi and A. Das

Journal: Electronics, 11(10), 1610

Date: 2022

3. Energy-Efficient Respiratory Anomaly Detection in Premature Newborn Infants

Authors: A. Paul, M. Tajin, A. Das, W. Mongan and K. Dandekar

Journal: Electronics, 11(5), 682

Date: 2022

2. On the Mitigation of Read Disturbances In Neuromorphic Inference Hardware

Authors: A. Paul, S. Song, T. Titirsha and A. Das

Journal: IEEE Design and Test

Date: 2022

1. Design of Many-Core Big Little uBrains for Energy-Efficient Embedded Neuromorphic Computing

Authors: M. Lakshmi Varshika, A. Balaji, F. Corradi, A. Das, J. Stuijt and F. Catthoor

Conference: Proceedings of the IEEE Design, Automation and Test in Europe Conference (DATE)

Date: March 14-23, 2022, Antwerp, Belgium

2021

Contact.

anup(dot)das(at)drexel(dot)edu skype: anup_lsic (215) 895 2847
  • DISCO Lab,
  • Electrical and Computer Engineering Department,
  • Drexel University
  • 3101 Market Street, Suite 236,
  • Philadelphia, PA 19104, USA